UNIVERSITY CEU SAN PABLO SCHOOL OF PHARMACY DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

COMPLEMENTARY PROBLEMS OF PHYSICAL CHEMISTRY

2018-19

LESSON 2

- **6.** One mole of carbon monoxide undergoes a reversible process from 10 atm and 10 l to a final pressure of 1 atm. Considering ideal behaviour, calculate Q, W, Δ U, Δ H, Δ A and Δ G if the process is :
 - a) isochoric
 - **b**) isothermal

Data: Cp = 7n/2 R and Cv = 5n/2 R

Solution:

- **a)** Q = -22812.74 J; W = 0; Δ U = -22812.74 J; Δ H = -31937.76 J; Δ S = -47.86 J·K⁻¹; Δ G = It can not be calculated; Δ A = It can not be calculated **b)** Q = 23345.89 J; W = -23345.89 J; Δ U = 0; Δ H = 0; Δ S = 19.14 J·K⁻¹; Δ G = Δ A = -23345.89 J.
- 7. 5 l of an ideal monoatomic gas at 300 K and 1 atm are compressed to 100 atm. Calculate Q, W, Δ U, Δ H, Δ S, Δ A, Δ G, for the reversible isothermal process. **Data:** R = 0.082 atm·l·mol⁻¹·K⁻¹ = 1.987 cal·mol⁻¹·K⁻¹ = 8.314 J·mol⁻¹·K⁻¹

Solution:

 $Q = -2333.99 \text{ J}; W = 2333.99 \text{ J}; \Delta U = \Delta H = 0; \Delta S = -7.78 \text{ J} \cdot \text{K}^{-1}; \Delta G = \Delta A = 2334.78 \text{ J}.$