UNIVERSITY CEU SAN PABLO
 SCHOOL OF PHARMACY
 DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

COMPLEMENTARY PROBLEMS OF PHYSICAL CHEMISTRY

2018-19

LESSON 2

6. One mole of carbon monoxide undergoes a reversible process from 10 atm and 101 to a final pressure of 1 atm . Considering ideal behaviour, calculate $\mathrm{Q}, \mathrm{W}, \Delta \mathrm{U}, \Delta \mathrm{H}$, $\Delta \mathrm{A}$ and $\Delta \mathrm{G}$ if the process is :
a) isochoric
b) isothermal

Data: $\mathrm{Cp}=7 \mathrm{n} / 2 \mathrm{R}$ and $\mathrm{Cv}=5 \mathrm{n} / 2 \mathrm{R}$
Solution:
a) $\mathrm{Q}=-22812.74 \mathrm{~J} ; \mathrm{W}=0 ; \Delta \mathrm{U}=-22812.74 \mathrm{~J} ; \Delta \mathrm{H}=-31937.76 \mathrm{~J} ; \Delta \mathrm{S}=-47.86 \mathrm{~J} \cdot \mathrm{~K}^{-1}$;
$\Delta \mathrm{G}=$ It can not be calculated; $\Delta \mathrm{A}=$ It can not be calculated
b) $\mathrm{Q}=23345.89 \mathrm{~J} ; \mathrm{W}=-23345.89 \mathrm{~J} ; \Delta \mathrm{U}=0 ; \Delta \mathrm{H}=0 ; \Delta \mathrm{S}=19.14 \mathrm{~J} \cdot \mathrm{~K}^{-1}$; $\Delta \mathrm{G}=\Delta \mathrm{A}=-23345.89 \mathrm{~J}$.
7. 51 of an ideal monoatomic gas at 300 K and 1 atm are compressed to 100 atm . Calculate $\mathrm{Q}, \mathrm{W}, \Delta \mathrm{U}, \Delta \mathrm{H}, \Delta \mathrm{S}, \Delta \mathrm{A}, \Delta \mathrm{G}$, for the reversible isothermal process.
Data: $\mathrm{R}=0.082 \mathrm{~atm} \cdot 1 \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=1.987 \mathrm{cal} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}=8.314 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$
Solution:
$\mathrm{Q}=-2333.99 \mathrm{~J} ; \mathrm{W}=2333.99 \mathrm{~J} ; \Delta \mathrm{U}=\Delta \mathrm{H}=0 ; \Delta \mathrm{S}=-7.78 \mathrm{~J} \cdot \mathrm{~K}^{-1} ; \Delta \mathrm{G}=\Delta \mathrm{A}=2334.78 \mathrm{~J}$.

